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For some time, it has been clear that students who are tutored generally learn more than students who
experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying
features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in
natural-language tutoring systems. One hypothesis is that the highly interactive nature of tutoring itself
promotes learning—that is, the interaction hypothesis. Although reasonable and agreeing with much
research, the interaction hypothesis raises the question of what linguistic mechanisms are involved: that
is, which features of “highly interactive” dialogues trigger what processes that are conducive to learning?
Our overall strategy in the research described in this article was to inform this question by identifying
co-constructed discourse relations in tutorial dialogues whose frequency of occurrence predicts learning,
identify the context in which these relations occur, and use this knowledge to formulate decision rules
to guide automated dialogues. We used Rhetorical Structure Theory to identify and tag co-constructed
discourse relations in a large corpus of physics tutoring dialogues. Our analyses suggest that the
effectiveness of human tutoring might well lie in the language of tutoring itself. Moreover, the types of
co-constructed discourse relations that predict learning seem to vary based on students’ ability level. We
describe Rimac, a natural-language tutoring system that implements an initial set of decision rules based
on these analyses. These rules guide reflective dialogues about the concepts associated with physics
problems. Rimac is being pilot tested in high school physics classes.
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Educators and policy makers in the United States have looked to
educational technology as a tool to increase students’ proficiency
in math, science, reading, and other subject matter domains. For
example, early in his administration, President Obama (2009)
challenged developers of intelligent tutoring systems (ITSs) to
develop “learning software as effective as a personal tutor” (para.
19). Apparently, Obama cast this challenge a bit too late. A recent
meta-analysis of research comparing the effectiveness of human
tutors with state-of-the-art ITSs showed that ITSs have already
nearly caught up with human tutors (VanLehn, 2011), with effect
sizes (d) of 0.76 for human tutoring and 0.79 for ITSs relative to

no tutoring (e.g., problem solving and reading, without feedback).1

This comparison raises the bar for developers of ITSs. The chal-
lenge now is to develop automated tutors that can perform even
better than human tutors with learners of all types.

Several researchers have proposed that the large effect sizes of
human tutoring can be attributed to its highly interactive nature—
that is, the high degree to which the student and tutor respond to
and build upon each other’s dialogue moves (e.g., M. T. H. Chi,
Siler, Jeong, Yamauchi, & Hausmann, 2001;2 Graesser, Person, &
Magliano, 1995; van de Sande & Greeno, 2010). However, an
important line of research conducted in the past few years to test
this so-called interaction hypothesis showed that it is neither how
much interaction takes place during tutoring that is important, nor
the granularity of interaction—for example, whether the student
and tutor discuss a step toward solving a problem or the substeps
that lead to that step. Instead, what matters most is how well the
interaction is carried out—for example, what content is addressed
and how it is addressed in a particular dialogue context (e.g., M.
Chi, VanLehn, Litman, & Jordan, 2010, 2011a, 2011b; Murray &
VanLehn, 2006).

This important finding suggests that the key to building tutoring
systems that surpass the effectiveness of human tutors is to specify

1 VanLehn’s (2011) review showed that the two sigma effect for human
tutoring reported by Bloom (1984) testifies to the importance of a mastery
learning standard and is not typical of human tutoring in general.

2 Two important players in the field of tutoring research have the same
last name and first initial. In our citations, we use M. T. H. Chi to refer to
Michelene (“Micki”) T. H. Chi and M. Chi to refer to Min Chi.
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what we mean by effective interaction and to formulate “policies
for selecting the tutorial action at each microstep when there are
multiple action options available” (M. Chi et al., 2011a, p. 87).
Such “policies” have alternatively been called pedagogical tutor-
ing tactics or pedagogical decision rules. We use the latter term
here (decision rules, for short). As several developers of natural-
language (NL) tutoring systems have argued, since tutorial dia-
logue is a form of discourse, defining effective interaction entails
identifying the particular linguistic mechanisms that support learn-
ing during tutorial interaction (e.g., Boyer et al., 2010; Di Eugenio
& Green, 2010; Pilkington, 2001; Ravenscroft & Pilkington,
2000). Decision rules can then be specified to guide the tutor in
determining when and how to carry out these linguistic mecha-
nisms.

This article describes the development of Rimac, a natural-
language tutoring system that scaffolds students in acquiring a
deeper understanding of the physics concepts and principles asso-
ciated with quantitative physics problems. Rimac was designed to
supplement instruction in physics tutoring systems such as Andes
(e.g., VanLehn et al., 2005).3 Rimac is primarily engineered to
implement decision rules that guide the automated tutor in carrying
out two linguistic mechanisms that have been found to predict
learning from human tutoring: tutors’ abstraction and specification
of students’ dialogue contributions (e.g., Katz, Allbritton, & Con-
nelly, 2003; Ward, Connelly, Katz, Litman, & Wilson, 2009). This
finding is supported by a significant body of prior research that
demonstrates that the formation of abstract schema (i.e., mental
representations of learned material) promotes transfer (e.g., Gick
& Holyoak, 1983, 1987; Leher & Littlefield, 1993; Reed, 1993;
Salomon & Perkins, 1989). During tutoring, abstraction takes
place when the tutor or student relates what his or her dialogue
partner said to explain a more general concept or principle. For
example, during physics tutoring, abstraction involves mapping
the physical state presented in a problem to concepts and principles
that explain that state or to a general script for solving that type of
problem. Specification is the reverse and typically occurs when the
tutor (or student) distinguishes between related concepts, instanti-
ates a formula that represents a physics principle, applies a
problem-solving script to the problem at hand, and so forth.

From a linguistic perspective, abstraction and specification are
often implemented through hypernym/hyponym pairs of terms
(Halliday & Hasan, 1976). For example, in the following exchange
from a live tutoring session, the tutor specifies “velocity” (hyper-
nym) in the student’s turn to “horizontal components of the ve-
locity” (hyponym).

Example 1

Student: Velocity is in the same direction as acceleration so the ball is
faster coming down.

Tutor: It [the ball] slows down going up, and it speeds up coming
down—but all the time the horizontal components of the velocity stay
unchanged. [italics ours]

However, sometimes abstraction and specification are imple-
mented through semantic relations between speaker turns, with
few or no lexical cues such as those shown in Example 1, and
inference is required to detect these semantic relations. For exam-
ple, in the following exchange, the student needs to infer that the

tutor’s phrase “change in velocity” abstracts over the student’s
phrase “final velocity is larger than the starting velocity.”

Example 2

Tutor: How do we know that we have an acceleration in this problem?

Student: Because the final velocity is larger than the starting velocity,
0.

Tutor: Right—a change in velocity implies acceleration. [italics ours]

In addition to implementing decision rules to guide the auto-
mated tutor in abstracting and specifying students’ dialogue turns,
Rimac also simulates a few other linguistic processes that com-
monly occur during physics tutoring—most notably, joint con-
struction of conditional reasoning relations, as we will illustrate
presently (Louwerse, Crossley, & Jeuniaux, 2008).

Several studies have shown that data-driven machine learning
techniques such as reinforcement learning can be applied to logged
interactions from natural-language tutoring systems in order to
derive decision rules to guide tutorial interaction (e.g., Beck,
Woolf, & Beal, 2000; M. Chi et al., 2010, 2011a, 2011b; Murray
& VanLehn, 2006). Evaluations of ITSs that implement these rules
have found that these systems significantly outperform counterpart
systems that carry out random policies—for example, “eliciting” a
problem-solving step or dialogue goal from the student sometimes,
“telling” the student that step or goal at other times, without clear
guidelines about what to do when. Some rule-driven tutoring
systems have also outperformed systems that implement “fixed”
tutoring policies (e.g., Murray & VanLehn, 2006)—for example,
responding to students’ help requests with increasingly directive
feedback such as prompt first, then hint, then teach relevant
background knowledge, and then (if all else fails) tell the student
what to do (the so-called bottom out hint).

Although this research demonstrates the promise of automated
methods for deriving effective decision rules to guide tutorial
dialogue, it also shows that the process is both difficult and costly.
As M. Chi et al. stated, “Finding effective tutorial tactics is not
easy” (M. Chi, Jordan, VanLehn, & Litman, 2009, p. 197). In
addition, the decision rules that stem from this approach are highly
domain specific and difficult to interpret. Take, for example, one
decision rule that M. Chi et al.’s (2011a) reinforcement-learning-
based system defined for “elicit versus tell”—that is, should a tutor
prompt the student for domain content at a particular point in a
dialogue or tell the student that content?

Rule 6 suggests that when the next dialogue content step is difficult
(StepSimplicityPS is 0), the ratio of physics concepts to words in the
tutor’s turns so far is high (TuConceptsToWordsPS is 1), and the tutor
has not been very wordy during the current session (TuAvg-
WordsSesPS is 0), then the tutor should tell. (p. 96)

On the one hand, finely nuanced rules such this one have the
benefit that researchers using conventional experimental methods
to test hypothesized decision rules could not predict these rules in

3 Rimac is the name of a river whose source is in the Andes. Its name is
a Quechua word meaning talking; hence, the nickname for Rimac, talking
river. We thus considered the name Rimac to be well suited for a dialogue
system that could be embedded within the Andes tutoring system.
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the first place. Similar observations have been made of the use of
automated approaches to identify linguistic features of tutorial
dialogue that predict learning, such as hidden Markov models
(e.g., Boyer et al., 2010). On the other hand, rules such as this are
cryptic and complex to implement, as the researchers have ac-
knowledged.

In developing natural-language dialogues for Rimac, we strove to
specify decision rules that were supported by preliminary empirical
research, more intuitive than those illustrated previously, and readily
implementable using a common framework for generating NL dia-
logues, which we will describe presently. Consequently, we took a
more conventional approach. We first performed correlational analy-
ses to identify specific relations between tutors’ and students’ dia-
logue moves in a large corpus of human-tutored physics dialogues
that predict student learning gains from pretest to posttest. We then
examined the context in which these relations typically occur and
formulated decision rules that specify these contextual conditions. We
implemented these rules within Rimac and are currently evaluating
the system to determine if it outperforms a less interactive, less
rule-driven tutoring system control.

In the next section, we situate Rimac in a framework of tutoring
research that highlights the need for effective decision rules to
guide natural-language dialogue systems. In keeping with the
theme of this special issue of the Journal of Educational Psychol-
ogy, we then describe the empirical research that we conducted to
derive decision rules to guide abstraction, specification, and other
commonly occurring relations between students’ and tutors’ dia-
logue turns, particularly during physics tutoring, and illustrate how
we implemented these rules within Rimac.

Cooperative Execution During Scaffolding

The most intensive interaction during human one-on-one tutor-
ing takes place during scaffolding, which M. T. H. Chi et al. (2001)
defined as follows:

[A] scaffolding move is a kind of guided prompting that pushes the
student a little further along the same line of thinking, rather than telling
the student some new information, giving direct feedback on a student’s
response, or raising a new question or a new issue that is unrelated to the
student’s reasoning . . . . The important point to note is that scaffolding
involves cooperative execution or coordination by the tutor and the
student (or the adult and child) in a way that allows the student to take an
increasingly larger burden in performing the skill. (p. 490).

The nexus of scaffolding lies in the fourth step of Graesser et
al.’s (1995) “five-step dialogue frame” (p. 504) to describe the
cyclic nature of tutorial interaction:

Step 1. Tutor asks question.

Step 2. Student answers question.

Step 3. Tutor gives short feedback on the quality of the
answer.

Step 4. Tutor and student collaboratively improve the qual-
ity of the answer.

Step 5. Tutor assesses student’s understanding of the
answer.

As Graesser et al. (1995) and others (e.g., VanLehn et al., 2007)
have noted, understanding Step 4 of this frame—that is, scaffold-
ing to improve the student’s answer—could hold the key to
understanding why human tutoring is so effective.

M. T. H. Chi et al.’s (2001) definition of scaffolding names two
linguistic mechanisms that drive it: coordination and cooperative
execution. We consider coordination first, because more research
has been devoted to describing it. Coordination refers to the ways
in which the tutor and student “stay on the same page”—that is,
“grounding” the conversation, by acknowledging their dialogue
partner’s moves, negotiating the meaning of terms, and sharing
knowledge (Clark & Schaefer, 1989; VanLehn, 2011). Coordina-
tion can also be supported by various forms of verbal alignment,
such as lexical cohesion (e.g., word repetition, synonymy, para-
phrase), and syntactic (word order) alignment (Garrod & Picker-
ing, 2004). When the student hears his words (or word order)
echoed in the tutor’s turn, the student knows that the tutor under-
stood what he or she said. Several studies have shown that the
degree of lexical and syntactic cohesion (alignment) during tutor-
ing predicts learning (e.g., Litman & Forbes-Riley, 2006; Stein-
hauser et al., 2011; Ward & Litman, 2008, 2011), in addition to
potentially enhancing coordination.

Cooperative execution refers to the joint construction of a line of
reasoning. According to VanLehn (2011), cooperative execution takes
place as tutors prompt students to continue a line of reasoning,
indicate who should continue the execution, and accept the student’s
reasoning (p. 211). Our observations of tutorial dialogues reveal that
cooperative execution during scaffolding involves more than these
dialogue management processes; it also involves co- construction of
the parts of an emerging line of reasoning or explanation. The anal-
yses described in the Method section were motivated by our hypoth-
esis that tutoring researchers need to formally describe these co-
constructed dialogue moves and determine which types of moves
support learning in order to develop natural-language dialogue sys-
tems that are as effective, or even more effective, than human tutors.

A Linguistic Framework to Describe Cooperative
Execution

Rhetorical Structure Theory (RST) is a theoretical linguistic frame-
work that specifies types of logical and functional relationships be-
tween parts of text and spoken discourse, including various types of
abstraction and specification relations. Mann and Thompson (1988),
who developed RST, argued that “it describes the relations among
text parts in functional terms, identifying both the transition point of
a relation and the extent of the items related” (p. 271). Functional and
logical relationships between parts of spoken and written discourse go
by many names, including rhetorical relations, coherence relations,
and discourse relations (Hovy, 1990). We use the latter term here.

Table 1 defines and illustrates the set of abstraction/specification
relations, and other discourse relations, which we manually tagged in
a corpus of human tutorial dialogues in order to determine which
co-constructed relations predict learning and are thereby most impor-
tant to simulate in Rimac. For example, a student applies the equation
for acceleration; the tutor then says something general about acceler-
ation (e.g., “Acceleration is a vector and hence has direction as well
as magnitude.”). In RST, this is a jointly constructed instance:abstract
discourse relation. To take another example, the tutor describes a set
of conditions that apply to a given physical situation—for example,
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“A car is moving to the right and is suddenly stopped”—and then
prompts the student to state the situation that follows from this set of
conditions—for example, that the car’s acceleration is to the left. This
is a co-constructed condition:situation (conditional) relation. Any
relation can be delivered didactically, by the tutor or student, instead
of interactively, as in these examples. For example, the tutor could
have stated the same conditional relation didactically as follows:
“Since the car is moving to the right and is suddenly stopped, its
acceleration is to the left.” However, we focused our investigation on
the potential relationship between co-constructed discourse relations

and learning because these relations realize cooperative execution
during scaffolding.

Method

To reiterate, our goals in the analyses described in this section were
to (a) determine if the frequency of particular types of co-constructed
discourse relations (those described and illustrated in Table 1) predict
learning, and whether this varies by student ability level, and (b)
formulate decision rules that specify the context in which those

Table 1
Discourse Relations Tagged in the Dialogue Corpus

Relation and definition (S � speaker) Example

Abstraction/specification relations

Abstract:instance (instance:abstract): S2 instantiates the abstraction stated
by S1, or S2 abstracts over the information presented by S1.

Tutor: How can the acceleration be 0 if there are forces on it?
Student: The sum of the forces equal 0 for there to be no acceleration.
Tutor: That’s exactly right. The weight and the normal force are (in

this case) equal and opposite.
Explanation: “In this case” (as the tutor says), the weight and normal

force being equal and opposite represent an instance of the
abstraction “sum of forces equal 0.”

Set:member (member:set): S2 presents a member of the set referred to
by S1, or S2 names the set to which an item mentioned by S1
belongs.

Tutor: What does the problem ask for?
Student: The magnitude of the acceleration
Tutor: What type of acceleration?
Student: Average
Explanation: The tutor refers to acceleration as a set and prompts for

a member of that set; the student gives the type of acceleration
asked for in the problem.

Whole:part (part:whole): S2 names a part of an object that S1referred to,
or S1 names a part of an object named by S2. (In physics, “parts” are
often vector components or the specific forces acting on an object.)

Student: Acceleration would be plus.
Tutor: Right, the x component of the acceleration would be plus.
Explanation: The student names a vector (acceleration); the tutor

refers to a specific component of that vector.

Process:step (step:process): S2 presents a step that follows from the
process or line of reasoning described by S1, or S2 describes the line
of reasoning that leads to the step described by S1.

Student: The acceleration is 0.
Tutor: So then m�a � 0 � Fnet � T � W and hence T � W.
Explanation: The student gives a step in a line of reasoning; the tutor

expands the line of reasoning (process) that follows from that step.

Object:attribute (units, direction, magnitude): S1 names an object or
value; S2 specifies a property of that object—in particular, its units,
direction, or magnitude.

Student: Velocity is 14.
Tutor: Right, 14 m/s.
Explanation: The student provides a value for velocity; the tutor
specifies its units.

Term:definition (definition:term): S2 defines a term mentioned by S1, or
S2 labels a statement by S1 with an appropriate term.

Tutor: What is the definition of the average acceleration (in words or
in mathematics)?
Student: A � (Vf � Vo)/Tf � To.
Explanation: The tutor prompts the student to define average
acceleration; the student does so.

General:specific (specific:general): S2 names a state, object, or action
that is related to the content in S1 but is more specific, or S2 is more
general than the state, object, or action referred to in S1. Applies
when none of the preceding relations apply.

Student: Average acceleration can vary.
Tutor: Right; it can go up above the average and down below it.
Explanation: The tutor specifies how acceleration can vary.

Other commonly occurring relations in physics tutoring

Condition:situation (situation:condition): (a) S1 presents a condition or
set of circumstances, and S2 states the situation that stems from or
coincides with those conditions, or (b) S1 presents a situation, and S2
states the conditions or circumstances that explain that situation.

Tutor: When do kinematics equations apply?
Student: When the acceleration is constant.
Explanation: This relation could be stated in conditional form: if
acceleration is constant, then the kinematics equations apply.

Compare: S2 compares an object, situation, or value referred to by S1
with some other object, situation, or value.

Tutor: What is the net force that the air bag imparts to the driver?
Student: Equal to the force the driver applies to the airbag.
Tutor: Same direction?
Student: No, opposite direction.
Explanation: The tutor prompts the student to compare the value and
direction of two.
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discourse relations predicting learning occurs, so that these rules can
guide student–tutor interaction in a NL tutoring system (Rimac).
Toward these aims, we coded all instances of co-constructed dis-
course relations in a large corpus of human-tutored physics dialogues.
The dialogue corpus and our approach to coding identified relations
are described in this section.

Dialogue Corpus

A well-known problem in physics education is that many stu-
dents learn to apply scripts for solving particular types of problems
and succeed in college-level physics courses; however, they none-
theless leave these courses without understanding fundamental
physics concepts and principles (Halloun & Hestenes, 1985). Re-
flective discussions following problem-solving exercises encour-
age students to think about the concepts and principles associated
with quantitative problems, often by changing some aspect of the
problem and prompting the student to consider how the answer
would change, as illustrated in Table 2. Several studies have
demonstrated the instructional benefits of reflection on problem-
solving exercises (e.g., Collins & Brown, 1986; Katz, Connelly, &
Wilson, 2007; Katz et al., 2003; Lee & Hutchison, 1998; Tch-
etagni, Nkambou, & Bourdeau, 2007; Ward & Litman, 2011).

The dialogue corpus that we analyzed stems from previous research
in which we compared the effectiveness of human-guided reflective
discussions about physics problems solved within the Andes physics
tutoring system (VanLehn et al., 2005) with static text explanations

and a no-dialogue control. We summarize the data collection proce-
dures that produced the dialogue corpus in this section. More details
about the study can be found in Katz et al. (2003).

Students who were taking an introductory physics course at
the University of Pittsburgh first took a physics pretest, with nine
quantitative and 27 qualitative physics problems. Following the pre-
test, students reviewed a workbook chapter developed for the exper-
iment and then received training on using Andes. There were three
conditions: one in which students received reflection questions and
interacted with a human tutor via a chat interface; a second reflection
condition in which students were asked the same set of reflection
questions but received a static text explanation as feedback after they
responded to these questions; and a third, a control condition in which
students were not asked reflection questions but solved more prob-
lems than students in the other two conditions to control for time on
task. There were 15 students in the static text and control conditions
and 16 students in the human-tutored condition. In the correlational
analyses discussed here, we only analyzed data from the human-
tutored condition, since we were interested in modeling effective
aspects of human tutorial dialogue.

Students in each condition began by solving a problem in
Andes. After completing the problem, students in both the static
feedback and human-tutored conditions were presented with a
conceptually oriented reflection question, as illustrated in Table 2.
Reflection questions such as the one shown in Table 2 are not part
of Andes; they were added for the experiment. After a student in
the human-tutored condition entered a response to the reflection
question, the student engaged in a typed dialogue with his or her
tutor via a simple chat interface. This dialogue continued until the
tutor was satisfied that the student understood the correct answer to
the question.

Between three and eight reflection questions were asked per prob-
lem solved in Andes for a total of 12 problems. After completing these
problems and their corresponding reflective dialogues, students took a
posttest that was isomorphic to the pretest, and the test order was
counterbalanced. The main finding of the study was that students who
answered reflection questions learned more than students in the no-
reflection control, who solved more Andes problems (Katz et al.,
2003). Consistent with authors of several other studies who found a
null effect for the interaction hypothesis, we did not observe a signif-
icant difference between the static feedback and human-tutored con-
ditions (VanLehn, 2011; VanLehn et al., 2007). However, the human-
tutored dialogue corpus revealed abundant instances of highly
interactive, cooperative execution during scaffolding episodes—spe-
cifically, exchanges in which the tutor incorporated parts of the
student’s turn, built on the student’s turn, and so on (e.g., Table
2)—or less frequently, the student did the same with respect to a
preceding tutor turn. Hence, we deemed this corpus well-suited for
exploring correlations between interactivity and student learning out-
comes.

The dialogue corpus is sizeable. Among the 16 students in the
human-tutored condition (four men, 12 women), 15 completed all
60 reflection question dialogues with a human tutor; one student
participated in 53 dialogues, producing a total of 953 reflective
dialogues. There were a total of 2,218 student turns and 2,135 tutor
turns across dialogues. The average number of turns per reflective
dialogue was 4.6, ranging from 2.1 turns for simple reflection
questions to 11.4 turns for the most complex questions. All dia-

Table 2
Example of a Reflective Dialogue Between a Human Tutor
and Student

Problem: In the figure below, each of the three strings exerts a tension
force on the ring as marked. Use the labels S1, S2, and S3 to refer to
the three strings. Find the components of the net force acting on the
ring.

Reflection question: What if I now told you that this ring has an
acceleration. If you knew the mass of the ring (3 kg), how would you
solve for the acceleration?

Student: 73.2 � 3�a; 100 � Fw � 3�a. Is this right; how would the
acceleration be the same for both?

Tutor: You have to keep the a_x and a_y distinguished. They are two
completely independent numbers that (together with a_z) specify your
acceleration vector. You don’t try to boil them down to one number.
It’s as if I told you, “To get to my house, you go 3 blocks north and
5 blocks east,” and you said, “Ah, so you just go 8 blocks”—the two
numbers together are the vector; they don’t “boil down” to one
number. OK?

Student: But can’t it only have one acceleration?
Tutor: It does have only one acceleration, but that acceleration is a

vector and it takes 3 numbers to write it down. You need to review
vectors in some detail; a_x, a_y, and a_z together specify the
acceleration vector.

Note. This example problem is part of the Andes Physics Tutor system,
which was developed at Arizona State University and the University of
Pittsburgh with support from the Pittsburgh Science of Learning Center,
National Science Foundation Award SBE-0836012, and Office of Naval
Research Grant N00014-96-1-0260 and is available at http://www
.andestutor.org
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logue examples presented in this article stem from this tutoring
corpus, unless otherwise noted.

Coding Scheme

Within each reflective dialogue, all student and tutor turns were
first manually parsed into clauses. We then searched for co-
constructed discourse relations at the exchange level—that is,
between a tutor’s dialogue turn and the subsequent student turn, or
the reverse. We coded these relations at two levels of analysis:
abstraction level type, and discourse relation type.

Abstraction Level Type

At the coarsest level, we tagged the level of abstraction of each
exchange in which a discourse relation was co-constructed. Four
codes distinguish these levels of abstraction, as described in the
following. Code abbreviations are shown in parentheses.

Specific-to-general (spec:gen). This code refers to abstrac-
tion, which happens in two main ways. The first type is when the
second speaker refers to a more general concept, principle, or
value than one that the first speaker referenced in his dialogue turn.
For example, in the following exchange, the tutor refers to speed,
and the student classifies speed as a scalar quantity:

Example 3

Tutor: Since the question asked about SPEED, suppose we had found
v_y to be negative. Should we include the minus sign when giving the
speed?

Student: I would say no because speed is scalar and doesn’t include
direction.

In the second type of abstraction, the second speaker refers to a
physics principle that explains or is illustrated by problem-specific
content in the first speaker’s turn. For example, in the following
exchange, the tutor prompts the student to apply a principle about
the relationship between acceleration and velocity to the bullet in
the case at hand:

Example 4

Reflection question: The bullet is travelling to the right. What direc-
tion is its acceleration?

Student: To the left because it is making the bullet slow down.

Tutor: Good—when something is slowing down, its acceleration has
a component opposite to its velocity.

General-to-specific (gen:spec). This code refers to specifica-
tion, which is the inverse of abstraction and also happens in two
main ways. The first type is when the second speaker refers to a
more specific concept, principle, or value than the one to which the
first speaker referred. For example, in the following exchange, the
tutor asks for the forces on a climber, and the student names two
types of forces:

Example 5

Tutor: What are the forces on her?

Student: Her weight and the tension of the rope. [italics ours]

The second main type of specification is when the second
speaker instantiates a principle or concept to which the first
speaker refers. For example, in the following exchange, the student
carries out the tutor’s directive to apply Newton’s second law to
the current problem:

Example 6

Tutor: Now use Newton’s second law and find [the climber’s] accel-
eration—a number and units; show me the symbols (the algebra).

Student: 39/55 � a, a � .71 m/s^2 downward.

Specific (spec). This code refers to cases in which the student
and tutor are both speaking at the same level of abstraction, typically
in reference to a particular problem. For example, in the following
exchange, the tutor and the student refer to the bungee in the current
problem. The tutor explains the situation that would result from the
student’s erroneous claim via a co-constructed conditional relation:

Example 7

Student: The only force acting on the bungee is the weight of the
person.

Tutor: If that were true, the bungee would accelerate downward!

General (gen). This code refers to cases in which the student
and tutor both speak at an abstract level, referring to principles,
laws, definitions, and so forth that are not directly tied to a
particular problem. For example, in the following exchange, the
tutor and student step outside of the context of the current problem
(about a falling hailstone) to discuss the difference between dis-
tance and displacement, in this comparison relation:

Example 8

Tutor: Is there a difference between displacement and distance?

Student: The displacement can have either value [� or �], but
distance is only �.

Table 3 presents the mean and standard deviation of abstraction
level tags across subjects.

Discourse Relation Type

At a finer level of analysis, we tagged the dialogue corpus for
the particular types of abstraction and specification relations de-
fined and illustrated in Table 1, in addition to two other commonly
occurring discourse relations in physics tutoring dialogues—con-
ditional reasoning statements and comparisons. Most of these
discourse relations are bidirectional (e.g., set:member, member:

Table 3
Mean Frequency of Abstraction Level Tags Across Tutored
Subjects (N � 16)

Abstraction level Mean SD

Specific-to-general 14.13 4.83
General-to-specific 37.31 15.12
Specific 3.31 2.18
General 11.06 5.31
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set); the exceptions are object:attribute and compare. We tagged
bidirectional relations separately (e.g., we treated set:member and
member:set as individual relations) and also treated each of the
object:attribute categories as a separate relation. Hence, overall,
there are 17 discourse relations in our coding scheme.

The basic unit of analysis at the discourse relation level is one
of these codes, specified in two ways. First, we specify the direc-
tion of the co-constructed relation in the exchange—that is, does
the tutor (T) start the relation and then the student (S) completes it,
or the reverse? The former is indicated by T–S before the discourse
relation name, and the latter by S–T—for example, S–T set:
member represents a set:member relation that the student initiates
and the tutor completes; and T–S abstract:instance represents an
abstract:instance relation that the tutor initiates and the student
completes. To illustrate, in the example shown in Table 1 for
set:member, the second exchange (T: What type of acceleration?
S: Average) would be tagged as T–S set:member.

The second way in which we modify discourse relation tags is by
indicating whether the second turn in a tagged relation was prompted,
via a question, or initiated by the second speaker. Prompted relations,
such as the one for set:member, are unmodified—that is, T–S set:
member means that the tutor prompted the student to provide a
member of a named set, as in the preceding example about “type of
acceleration.” Initiated relations are flagged as elaborations (elab),
because the second speaker is adding information to what the first
speaker said. To illustrate, in the example for abstract:instance shown
in Table 1, the tutor elaborates on the student’s turn, by instantiating
the student’s abstract statement:

Example 9

Student: The sum of the forces equals 0 for there to be no acceleration.

Tutor: That’s exactly right. The weight and the normal force are (in
this case) equal and opposite.

This relation would be tagged as S–T elab(abstract:instance) to
indicate that the tutor elaborated on the student’s statement via an
abstract:instance relation. Instantiation is signaled by the tutor’s
phrase “in this case.”

In addition to prompted and initiated variants of discourse relations,
in both directions (S–T and T–S), we included three types of aggre-
gate variables in our analyses. One aggregate variable includes the
four prompted and initiated (elaborated) forms of a discourse relation.
For example, the aggregate variable whole:part represents:

S–T whole:part � T–S whole:part � S–T elab(whole:part) � T–S
elab(whole:part).

The second type of aggregate variable includes the four forms of
the first relation, plus the four forms of its inverse. For example,
the following formula represents all-whole:part-bd, where bd
means bidirectional, for a particular relation (e.g., whole:part and
part:whole, each consisting of the four forms shown in the for-
mula):

[S–T whole:part � T–S whole:part � S–T elab(whole:part) � T–S
elab(whole:part)] � [S–T part:whole � T–S part:whole � S–T elab
(part:whole) � T–S elab(part:whole)].

The third type of aggregate variable includes the summation of all
initiated elaborations. Specifically, T-S elab is the summation of
student elaborations on the tutor’s previous turn, for all base

relations (e.g., whole:part, set:member); S-T elab is the summation
of tutor elaborations of the student’s previous turn, for all base
relations; and all-elab-bd � T-S elab � S-T elab.

Table 4 summarizes the means and standard deviation of dis-
course relation tags and aggregate tags across subjects.

Data Analysis

We conducted correlational analyses between the frequency of
abstraction level codes, discourse relation codes, and three mea-
sures of student learning: overall gain score from pretest to post-
test, gain score on qualitative test items, and gain score on quan-
titative test items. We conducted these analyses taking the 16 tutored
students as a whole and separately for low and high pretest students,
as classified according to a median split. There were seven high
pretest students and nine low pretest students. These numbers are
uneven because the two pretest scores in the middle of the distri-
bution were identical; both students who had these scores were
assigned to the low pretest group. We divided students into these
ability groups in order to investigate whether better prepared
students (high pretesters) might benefit from co-constructing dif-

Table 4
Mean Frequency of Discourse Relation Tags Across Tutored
Subjects (N � 16)

Discourse relation variable or
aggregate variable Mean SD

Abstract:instance 9.63 5.28
Instance:abstract 3.50 2.34
All-abstract:instance-bd 13.13 6.02
All-compare 3.19 1.83
Term:definition 3.00 2.25
Definition:term 0.13 0.34
All-term:definition-bd 3.13 2.22
Object:attribute-units 1.63 2.06
Object:attribute-direction 4.06 2.41
Object:attribute-sign 0.19 0.40
Object:attribute-magnitude 0.69 0.79
All-object-attribute 6.56 3.76
Process:step 0.56 0.63
Step:process 3.00 2.34
All-process:step-bd 3.56 2.31
Set:member 0.88 1.50
Member:set 2.00 1.67
All-member:set-bd 2.88 2.58
Whole:part 2.88 1.78
Part:whole 0.44 0.73
All-part:whole-bd 3.31 1.99
Circumstance:situation 13.00 6.79
Situation:circumstance 9.19 2.90
All-circumstance:situation-bd 22.19 6.93
Gen:spec 3.31 1.99
Spec:gen 0.75 1.07
All-gen:spec-bd 4.06 2.24
T–S elab 1.00 1.10
S–T elab 22.13 12.15
All-elab-bd 23.13 12.41

Note. Aggregate variables include modified forms of the base relation
(e.g., whole:part) as described in the text. Gen � general; Spec � specific;
T � tutor; S � student; bd � bidirectional; T-S elab � summation of
student elaborations on the tutor’s previous turn, for all base relations; S-T
elab � summation of tutor elaborations of the student’s previous turn, for
all base relations; all-elab-bd � T-S elab � S-T elab.
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ferent types of discourse relations with their tutor than less well-
prepared students (low pretesters).

The results of these analyses are presented in the next section.
We then describe the decision rules that stem from these findings.

Results and Discussion

Discourse Relations That Predict Learning: All
Students Considered Together

Correlations for the subject pool taken as a whole (N � 16) are
displayed in Table 5. To save space, we only discuss significant
findings (p � .05) for all three types of gain.

Overall gain. The frequency of three discourse relations pre-
dicted overall gain: (a) various forms of the whole:part relation
[S–T elab(whole:part) and two aggregate variables: whole:part and
all-whole:part-bd], (b) S–T situation:condition relations, in which
the student prompts the tutor to specify the conditions under which
a physical situation occurs and the tutor replies accordingly, and

(c) various forms of the step:process relation [S–T elab(step:
process) and the aggregate variable step:process], in which one
dialogue partner provides the steps in a line of reasoning that stem
from, or lead to, a step in his partner’s turn, for example:

Example 10

Reflection question: How do we know that we have an acceleration in
this problem?

Student: Because of gravity pulling down.

Tutor: The force due to gravity produces a net force and thus an
acceleration.

In this exchange, the tutor provides the line of reasoning that
follows from the student’s response (gravity¡ existence of a net
force ¡ existence of acceleration), via an S–T elab(step:process)
relation.

Qualitative gain. Generalizations predicted learning of a
qualitative (conceptual) nature; a trend was also found for gener-
alization and overall gain. This is not surprising, given that gen-
eralizations typically address physics concepts, laws, and princi-
ples. As with overall gain, various forms of the step:process
relation also predicted qualitative gain across subjects [S–T elab-
(step:process) and two aggregate variables: step:process and all-
process-step-bd]. In addition, a particular type of generalization
predicted qualitative gain: S–T elab(member:set), in which the
tutor elaborates on a student turn by stating the set to which an
object that the student referred to belongs:

Example 11

Reflection question: How do we know that we have an acceleration in
this problem?

Student: Because it is a free fall problem so gravity is at work.

Tutor: Gravity is a type of acceleration.

Quantitative gain. The “spec” abstraction level type, repre-
senting exchanges in which the tutor and student refer to the
current problem, negatively correlated with quantitative gain.
However, two particular forms of specification strongly predicted
quantitative gain: S–T elab(set:member), in which the tutor states
a member of a set that the student referred to, and S–T elab(whole:
part), which typically reflects exchanges in which the tutor spec-
ifies the components of a vector that the student mentioned or the
applied forces on an object that the student mentioned:

Example 12

Student: (String1 � String2)/g � mass of plane.

Tutor: It would be (Ft1_y � Ft2_y)/g � mass, OK?

Discourse Relations That Predict Learning Among
Low Pretest Students

Correlations for low pretest students (N � 9) are displayed in
Table 6. We again focus our discussion on significant findings
(p � .05) for all three types of gain.

Overall gain. Student generalizations over the tutor’s turn
positively correlated with low pretesters’ overall gain score; how-

Table 5
Correlations for All Students Considered Together (N � 16)

Abstraction level and discourse
relations Mean SD R p

Overall gain
Abstraction level: [spec:gen] 14.13 4.829 .450 .081
Discourse relations

S–T elab(step:process) 1.56 1.365 .646 .007��

step:process 3.00 2.338 .582 .018
S–T elab(member:set) 0.94 0.680 .667 .005��

S–T elab(whole:part) 1.00 1.366 .524 .037
whole:part 2.88 1.784 .528 .035
all-part:whole-bd 3.31 1.991 .553 .026
S–T situation:condition 0.44 0.814 .531 .034
[definition:term] 0.13 0.342 �.485 .057
[all-proc:step-bd] 3.56 2.308 .473 .064

Qualitative gain
Abstraction level: spec:gen 14.13 4.829 .516 .041
Discourse relations

S–T elab(step:process) 1.56 1.365 .653 .006��

step:process 3.00 2.338 .591 .016
all-proc:step-bd 3.56 2.308 .527 .036
S–T elab(member:set) 0.94 0.680 .558 .025
[T–S elab(term:definition)] 0.06 0.250 .469 .067
[definition:term] 0.13 0.342 �.443 .086
[S–T step:process] 0.06 0.250 .469 .067
[whole:part] 2.88 1.784 .463 .071
[all-part:whole-bd] 3.31 1.991 .457 .075
[S–T situation:condition] 0.44 0.814 .487 .056

Quantitative gain
Abstraction level: spec 3.31 2.182 �.530 .035
Discourse relations

S–T elab(set:member) 0.06 0.250 .740 .001��

S–T elab(whole:part) 1.00 1.366 .675 .004��

[T–S instance:abstract] 0.38 0.500 �.493 .052
[Object:attribute-magnitude] 0.69 0.793 �.467 .068
[Process:step] 0.56 0.629 �.445 .084
[S–T elab(member:set)] 0.94 0.680 .443 .086
[all-part:whole-bd] 3.31 1.991 .452 .079

Note. Trends are indicated by brackets. Gen � general; Spec � specific;
T � tutor; S � student; bd � bidirectional; elab � elaborated; proc �
process.
�� p � .01.
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ever, tutor specifications relative to the tutor’s turn negatively
correlated with overall gain. Consistent with the findings from the
set of students taken together, one discourse relation whose fre-
quency predicted overall gain among low pretesters was S–T
situation:condition, in which the student asks the tutor to explain
the circumstances under which a given physical state (velocity
decreasing in the y direction) applies:

Example 13

Student: Why is velocity decreasing in the y direction?

Tutor: It starts out going up and gravity pulls it down. When accel-
eration is opposed to velocity, the object slows down.

Qualitative gain. Low pretesters’ abstraction over the tutors’
turns (T–S spec:gen) predicted qualitative gain score, consistent
with a trend for abstraction either by the student or the tutor
(spec:gen) to predict qualitative gain. Only one aggregate dis-
course relation variable significantly predicted qualitative gain
among low pretest students: situation:condition, which is the con-
ditional relation in which the second speaker provides the condi-
tions that explain the situation described by the first speaker, either
because the first speaker solicited this information or the second
speaker initiated it. Example 13 illustrated a student-solicited
conditional relation. The following exchange shows a tutor
prompting the student to specify a condition in a T–S situation:
condition relation:

Example 14

Tutor: Why does the tension equal the weight in this problem?

Student: Because there are no other outside forces acting on the
bungee/jumper system.

Encouraging low pretest students to explain their claims (e.g.,
tension � weight) appears to be beneficial and is under the
tutoring system’s control, in contrast to student-initiated condition-
als, such as the one shown in Example 13.

Quantitative gain. Consistent with the findings for all stu-
dents considered together, the frequency of exchanges in which
both participants focused on the case at hand negatively correlated
with quantitative gain among low pretest students. In addition, the
frequency of one type of specification negatively predicted quan-
titative gain for this group: T–S object:attribute-direction relations,
in which the tutor prompts the student to specify the direction of a
value. Specifying the correct direction of a vector often requires
conceptual understanding, so this negative correlation could reflect
the difficulty that less-prepared students have in determining di-
rection. However, the frequency of several other specification
relations predicted quantitative gains for low pretesters—in par-
ticular, tutor-initiated set:member [S–T elab(set:member)], whole:
part [S–T elab(whole:part)], and gen:spec [S–T elab(gen:spec)]
relations. The following exchange illustrates the tutor adding more
specific information to the student’s dialogue turn, in an S–T
elab(gen:spec) relation:

Example 15

Reflection question: Does gravity have any effect on the vertical
motion of the firecracker? What about the horizontal motion? Explain
your answers.

Student: Vertical motion, yes; it makes it harder for the firecracker to
travel away from the earth because gravity is pushing down, so it adds
resistance.

Tutor: Good, that is right (and it pulls the firecracker back down after
the high point also).

As this exchange illustrates, students sometimes answer ques-
tions correctly but not completely. The tutor added information
necessary to complete the student’s answer to the reflection ques-
tion. Perhaps making low pretest students aware of complete
answers, by adding to students’ dialogue contributions, increases
these students’ quantitative problem-solving ability.

Discourse Relations That Predict Learning Among
High Pretest Students

Correlations for high pretest students (N � 7) are displayed in
Table 7. We again focus our discussion on significant findings
(p � .05) for all three types of gain.

Overall gain. The frequency of only one discourse relation
significantly predicted high pretest students’ overall gain score:
S–T elab(whole:part), which was also observed for the group of
students as a whole. As discussed previously, this relation typically
occurs when the tutor specifies the components of a vector that the
student named, the specific forces that comprise the net force, etc.
This finding suggests that adding this level of precision to high
pretesters’ dialogue contributions supports learning.

Table 6
Correlations for Low-Pretest Students (N � 9)

Abstraction level and discourse
relations Mean SD R p

Overall gain
Abstraction level

T–S spec:gen 4.44 3.005 .671 .048
S–T spec 1.67 1.732 �.719 .029

Discourse relations
S–T situation:condition 0.67 1.000 .679 .044
[S–T elab(abstract:instance)] 1.89 1.833 �.624 .072
[T–S member:set] 0.78 1.093 .617 .077
[S–T elab(member:set)] 1.11 0.782 .646 .060

Qualitative gain
Abstraction level

T–S spec:gen 4.44 3.005 .855 .003��

[spec:gen] 16.00 5.050 .600 .088
Discourse relations
situation:condition 8.89 2.667 .676 .045
[S–T elab(abstract:instance)] 1.89 1.833 �.661 .053
[S–T elab(step:process)] 2.22 1.481 .594 .092

Quantitative gain
Abstraction level

spec 3.33 2.550 �.699 .036
[T–S gen:spec] 31.33 11.424 �.662 .052

Discourse relations
T–S object:attribute-direction 3.33 2.121 �.672 .047
S–T elab(set:member) 0.11 0.333 .884 .002��

S–T elab(whole:part) 1.44 1.590 .741 .022
S–T elab(gen:spec) 1.78 2.279 .680 .044
[object:attribute-direction] 4.56 2.789 �.595 .091
[situation:condition] 8.89 2.667 �.657 .055

Note. Trends are indicated by brackets. T � tutor; S � student; gen �
general; spec � specific; elab � elaboration.
�� p � .01.
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Qualitative gain. The frequency of several discourse relations
predicted qualitative gains among high pretest students: tutor def-
initions of terms mentioned in the student’s dialogue move [S–T
elab(term:definition)]; whole:part relations [S–T whole:part, and
S–T elab(whole:part)]; conditional relations that the student takes
the initiative to complete [T–S elab(condition:situation)]; and one
aggregate variable—object:attribute-units, in which the tutor
prompts the student to provide missing units, or does this for the
student. Tutor-initiated definitions typically occurred when the
student used a term incorrectly and the tutor corrected it, as
illustrated in the following exchange:

Example 16

Student: The force equals the mass of the book plus the other forces
acting on it, which would be considered the acceleration.

Tutor: Well . . . the acceleration is the rate of change of its velocity.

Perhaps giving high pretest students the definition of a misused
term sometimes suffices to correct their knowledge.

It is unclear why providing units (or prompting students to
provide units) might support qualitative understanding. Perhaps
units cement the difference between concepts or support students
in understanding the temporal and spatial properties of physical
concepts.

Quantitative gain. The frequency of one discourse relation
predicted quantitative learning among high pretest students: ex-

changes in which the tutor provides a step in a line of reasoning
and prompts the student to provide the line of reasoning that
follows from that step or that is necessary to get to that step. For
example, in the following exchange, the tutor states the final step
in the problem (tension � weight) and prompts the student to
explain how she arrived at that conclusion, via a T–S step:process
relation:

Example 17

Tutor: OK . . . so then why does tension � weight . . . show me how
you got your answer.

Student: F � Ften � ma, a � 0, so mg � Ften.

Two aggregate variables indicate that elaborations potentially
hinder high pretesters’ ability to gain quantitative knowledge and
skills: S � T elab and all-elab-bd. The latter includes all elabora-
tions initiated by either students or tutors; however, most were
issued by tutors (354 vs. 16). Perhaps filling in too many details in
the line of reasoning hinders learning among more knowledgeable
students; it might be better to let them fill in the gaps on their own,
as indicated by prior research on textual coherence (e.g., McNa-
mara, 2001; McNamara & Kintsch, 1996; McNamara, Kintsch,
Songer, & Kintsch, 1996).

Decision Rules to Guide Automated Scaffolding

The analyses discussed in the previous section suggest that
particular forms of cooperative execution that take place during
scaffolding, implemented via co-constructed discourse relations,
predict learning gains. However, since correlation does not imply
causality, we need to determine if a tutorial dialogue system that is
explicitly designed to encourage joint construction of these poten-
tially beneficial discourse relations outperforms a counterpart tu-
toring system not so designed.

This section describes decision rules that stem from the findings
discussed in the preceding section. These rules can guide the
tutoring system in simulating these potentially effective aspects of
human tutoring. Where appropriate, we provide further detail on
the context in which these rules apply than we did in the previous
section. In the next section, we illustrate how these decision rules
are implemented in Rimac, in contrast to a control dialogue sys-
tem.

Rule 1. When the student provides a step in a line of reason-
ing, the tutor may provide the missing steps of the line of reason-
ing, rather than ask about each step individually.

This decision rule stems from several correlations involving
the step:process relation—specifically, for the group of students
taken as a whole, the frequency of S–T elab(step:process)
relations predicted overall gain, R(14) � .646, p � .007, and the
aggregate variable step:process predicted both overall gain and
qualitative gain, R(14) � .582, p � .18, and R(14) � .591, p �
.016, respectively. The tutor’s extension of the student’s line of
reasoning took place in three main contexts: (a) when the
student answered a question correctly but not completely, as
illustrated in Example 10; (b) when the student had some
trouble coming up with a problem-solving or reasoning step, in
which case the tutor filled in some of the line of reasoning and
then prompted the student for additional steps; and (c) when the
student reached the final step of a solution or line of reasoning,

Table 7
Correlations for High Pretest Students (N � 7)

Abstraction level and discourse
relations Mean SD R p

Overall gain
Abstraction level: [S–T Gen] 3.00 1.826 �.700 .080
Discourse relations

S-T elab(whole:part) 0.43 0.787 .826 .022
[object:attribute-units] 1.14 0.690 .709 .074
[object:attribute-direction] 3.43 1.813 �.713 .072
[all-object-attribute] 5.43 1.272 �.695 .083
[S–T elab(member:set)] 0.71 0.488 .719 .069

Qualitative gain
Abstraction level

[T–S spec] 2.29 1.704 .723 .066
[T–S spec:gen] 4.86 2.734 �.733 .061
[Gen] 10.43 5.224 �.688 .087

Discourse relations
S–T elab(term:definition) 0.29 0.756 .863 .012
object:attribute-units 1.14 0.690 .817 .025
S–T whole:part 0.14 0.378 .863 .012
S–T elab(whole:part) 0.43 0.787 .809 .028
T–S elab(condition:situation) 0.29 0.756 .863 .012
[situation:condition] 9.57 3.359 �.697 .082

Quantitative gain
Abstraction level: [Gen:spec] 32.00 11.986 �.720 .068
Discourse relations

T–S step:process 1.00 1.000 .831 .020
S–T elab 18.00 6.325 �.756 .049
all-elab-bd 19.00 6.952 �.762 .046
[S–T elab(instance:abstract)] 2.57 1.397 �.733 .061
[all-abstract:instance-bd] 11.71 5.707 �.739 .058
[step:process] 1.71 1.113 .694 .084

Note. Trends are indicated by brackets. S � student; T � tutor; Gen �
general; elab � elaboration; bd � bidirectional.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1135TUTORING SYSTEM



in which case the tutor summarized the steps leading up to that
conclusion. This mainly happened at the end of a problem.

Rule 2. If a student states a value but does not state how he
derived it, the tutor should prompt the student to explicate his
reasoning process.

This rule is similar to the preceding one, except that here the
student, not the tutor, is expanding the line of reasoning as
illustrated in Example 17. It stems from the finding that the
frequency of T–S step:process relations predicted quantitative
learning gains, particularly for high pretest students, R(5) �
.831, p � .020.

Rule 3. When students state vectors rather than vector com-
ponents while solving equations, the tutor should provide the
corresponding equation with components. Alternatively, the tutor
should prompt the student to provide the vector components.

This rule stems from several correlations involving the basic
whole:part relation. For example, the frequency of S–T
elab(whole:part) relations, in which the tutor specifies the vector
components (Example 12), predicted overall gain for the whole
group of students, R(14) � .524, p � .037. In addition, two
aggregate variables predicted overall gain: whole:part and all-
whole:part-bd, R(14) � .528, p � .035, and R(14) � .553, p �
.026, respectively. Similar correlations were found for the group of
high pretest students.

Rule 4. When the student oversimplifies the circumstances
under which a given physical situation applies or fails to make
explicit the relationship between a narrower term and a broader
term, the tutor should make these “member:set” relations explicit.

This rule is based on the finding that the frequency of S–T
elab(member:set) relations predicted overall gain for all students
taken together, R(14) � .667, p � .005, for low pretest students,
R(7) � .646, p � .060, and for high pretest students, R(5) � 0.719,
p � .069. Example 11 illustrates a case in which the tutor states the
class in which a narrower concept belongs (e.g., gravity is a type
of acceleration) when the student’s claim implies this but does not
say it explicitly.

The following exchange illustrates the tutor reacting to a stu-
dent’s oversimplification of the circumstances associated with a
physical situation. The student provides two examples of forces
that could account for constant velocity (or a null net force); the
tutor names the set “Anything else [other forces] that could make
the net force 0”:

Example 18

Student: No acceleration for a constant velocity; this would only be
possible for a situation with a great deal of air resistance or friction.

Tutor: Or anything else to make the net force 0! The forces could be
different.

Rule 5. The tutor should ask “why” questions when the stu-
dent does not provide an explanation to support a claim, especially
with less knowledgeable students.

This rule stems mainly from our finding that the frequency of
conditional relations in which the tutor specified the conditions
under which a situation described by the student applied (i.e., S–T
situation:condition relations), correlated with overall learning
gains for the group of low pretest students, R(7) � .679, p � .044.
The aggregate variable situation:condition also predicted qualita-

tive gains for this group, R(7) � .676, p � .045. This finding
supports Louwerse et al.’s (2008) suggestion that prompting stu-
dents to express conditional relations exposes gaps in their rea-
soning process that the tutor can address, and this exercise pro-
motes learning.

Example 13 illustrates a case in which a student takes initiative
and asks the tutor to state the conditions that explain a given
situation, while Example 14 illustrates the more readily imple-
mented case of the tutor prompting the student to state relevant
conditions, via a T–S situation:condition relation. “Why” prompts
such as this typically occur when the student answers a question
correctly but does not justify his answer, as in the following
exchange:

Example 19

Reflection question: Does average acceleration imply that the accel-
eration is the same at every instant?

Student: No.

Tutor: Correct—could you say why?

Student: Because average is taking different velocities over different
times.

Rule 6. If the student answers a question incorrectly, if pos-
sible show why it is incorrect by stating the conditions under which
it would be correct.

This rule is related to the preceding and is mainly motivated by
the correlation between the frequency of the aggregate situation:
circumstance relation and qualitative gains among low pretest
students. It reflects cases in which a student states a situation (the
consequent in a conditional relation) and the tutor provides the
conditions (antecedent) that would hold true if the situation were
true. For example, in the following dialogue excerpt, the tutor
states the conditions that would explain a net force of 0 on a
bungee jumper:

Example 20

Reflection question: What minimum acceleration (in magnitude) must
the jumper have in order for the cord not to break while he is on his
way down?

Student: 700 N/mass � a.

Tutor: Not quite, good start. What is the �net� force on him? (in terms
of the tension and mg)?

Student: The net force is 0.

Tutor: Ah, OK. When he is hanging there, it is 0, or if he is moving
with constant velocity.

Rule 7. If the student gives a partially correct answer, the
tutor should complete it, especially for less knowledgeable stu-
dents.

This rule is based on the finding that the frequency in which the
tutor extends a partial or underspecified statement in the student’s
dialogue turn, via S–T elab(gen:spec) relations, correlated with
quantitative gains, among low pretest students. Example 15 dem-
onstrates a tutor’s application of this rule.
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Rule 8. When the student uses a term incorrectly, give the
definition of the term to help the student correct his or her mistake.

This rule stems from the finding that the frequency of S–T
elab(term:definition) relations, in which the tutor defined a term
that the student stated incorrectly or misapplied, correlated with
qualitative gains, particularly among high pretest students, R(5) �
.863, p � .012. Example 16 illustrates this rule.

Rule 9. The tutor should ask for missing units or prompt the
student to provide them, especially when a student is performing
well—for example, when the student is close to solving a problem
or answering a qualitative question.

This rule is based on the finding that the frequency of the
aggregate variable object:attribute-units, which includes all ex-
changes in which the student presented a value without units and
the tutor either provided these units or prompted the student to do
so, correlated with qualitative learning among high pretest stu-
dents, R(5) � .817, p � .025. In the following exchange, the tutor
provides the missing units:

Example 21

Student: T � mg � ma; 500 � 539 � 55a.

Tutor: Good deal. (I would add units there by the way: 500N – 539N �
55 kg�a.)

This rule is supported by prior research which used auto-
mated, machine learning methods to determine when abstrac-
tions and specification take place during reflective dialogues
(Lipschultz, Litman, Jordon, & Katz, 2011). This research
found that tutors tend to abstract over the student’s dialogue
contribution early in a reflective dialogue, when students are
having difficulty responding to the tutoring system’s reflection
question. These abstractions appear to be aimed at ensuring that
the student understands the basic concepts needed to answer the
automated tutor’s question. Then, as the dialogue progresses,
and the student is closer to answering the reflection question
correctly, specification becomes more frequent than abstrac-
tion, as tutors probe students for precision—for example, to

specify units and direction for a vector quantity, when the
student only states its magnitude.

An Example: Implementing Decision Rules in Rimac

Reflective dialogues in Rimac were developed using a well-
known framework called knowledge construction dialogues
(KCDs). Several NL tutoring systems that have been found to be
more effective than noninteractive forms of instruction (e.g., read-
ing a textbook) have been developed using the KCD framework
(e.g., Aleven, Popescu, Ogan, & Koedinger, 2003; Connelly &
Katz, 2009; Graesser et al., 2003; Graesser, Person, Harter, & the
Tutoring Research Group, 2001; Jordan, Ringenberg, & Hall,

Table 8
Example of a Rimac Problem and Reflection Question

A modern supertanker is gigantic: 1,200–1,300 ft. long with a 200-ft.
beam. Fully loaded, it chugs along at about 16.0 knots (8.33 m/s). It
can take 1,200 s to bring it to a full stop. Calculate both the
acceleration in m/s2 and the displacement of the tanker using this
stopping time.

Acceleration:
Displacement:

Reflection question: Is the acceleration pointing in the same direction
or in the opposite direction of the supertanker’s motion?

Note. This example problem is part of the Andes Physics Tutor system,
which was developed at Arizona State University and the University of
Pittsburgh with support from the Pittsburgh Science of Learning Center,
National Science Foundation Award SBE-0836012, and Office of Naval
Research Grant N00014-96-1-0260 and is available at http://www.
andestutor.org

What are the forces exerted on the egg after the clown releases it?  Please specify their directions. 

gravity down gravity vertical down 

Fine 
Yes.  The direction 
is vertically down 

What force is applied because 
the egg is near the earth? 

Are there any other forces on the egg? 

contact forces no 

<remediation> 

gravity 
 
What is the direction of the 
force of gravity? 
 
 

vertical 

Now, what is the net force on the egg? 

Figure 1. The dialogue paths of three students as they traverse the arcs in a knowledge construction dialogue
(KCD). Adapted from “Tools for Authoring a Dialogue Agent That Participates in Learning Studies,” by P. W.
Jordan, B. Hall, M. Ringenberg, Y. Cui, and C. P. Rosé in R. Lucklin, K. R. Koedinger, & J. E. Greer (Eds.),
2007. AIED 2007: Proceedings of the 13th International Conference on Artificial Intelligence in Education, Los
Angeles, CA (p. 48). Copyright 2007 by IOS Press, Amsterdam, the Netherlands Adapted with permission.
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2006; Katz et al., 2007; Rosé et al., 2001). During a KCD, the
automated tutor presents a series of carefully ordered questions to
the student, known as a directed line of reasoning (DLR; Evens &
Michael, 2006). If a student answers a question correctly, the
student advances to the next question in the DLR. Otherwise, the
system launches a remedial subdialogue and then returns to
the main DLR after the remedial subdialogue has completed. This
process is illustrated in Figure 1.

KCDs in Rimac were implemented using TuTalk, a NL-
dialogue-authoring toolkit (Jordan et al., 2006; Jordan, Hall,
Ringenberg, Cui, & Rosé, 2007). TuTalk enables domain experts
to construct NL tutoring systems without programming. Instead,
they can focus on defining the tutoring content and structure of
KCDs.

From a research perspective, the main advantage of using
KCDs is that the content and structure of KCDs are determined
a priori by the dialogue developer, so different versions of a
given KCD can be designed to test a hypothesis. Since our goal
was to determine if the decision rules that we specified to guide
simulation of cooperative execution during scaffolding enhance
learning, we developed two versions of each Rimac KCD: one
version that implements these rules in appropriate contexts and
another that simulates the standard KCD practice of the tutor
eliciting information from the student, hinting when possible,
and stating the answer after the student has made one or two
unsuccessful tries.

We illustrate these two versions of a Rimac KCD with respect
to the problem and reflection question shown in Table 8. Dialogue
excerpts illustrate implementation of three of the decision rules
described in the preceding section in the experimental version of
the dialogue.

In the dialogue excerpt shown in Table 9, the decision-rule-
driven KCD applies Rule 5 because the student answered the
question correctly but without justifying it: The tutor should ask
“why” questions when the student does not provide an explanation
to support a claim, especially for less knowledgeable students. In
contrast, the standard KCD excerpt just gives the student positive
feedback. In both cases, the dialogue steps through the line of
reasoning that leads to the correct answer because even students
who answer “why” questions correctly sometimes do so by rote.

An intermediate step of the line of reasoning is shown in Table
10. In this case, the experimental (decision-rule-driven) KCD
applies Rule 6: If the student answers a question incorrectly, if
possible show why it is incorrect by stating the conditions under
which it would be correct. In contrast, the standard KCD simply
corrects the student without acknowledging or addressing the
student’s response. Reformulating students’ dialogue contribu-
tions, whether correct or incorrect, is a common practice during
human tutoring, but its effectiveness has not been directly tested.
We implemented specific procedures within TuTalk to simulate
reformulation in Rimac (Jordan, Katz, Albacete, Ford, & Wilson,
2012).

At the final step of the line of line of reasoning, the decision-
rule-driven KCD summarizes the main physics principle addressed
in this reflection question (see Table 8) and recaps the line of
reasoning that supports this principle, thereby applying Rule 1. In
contrast, the standard KCD only states the general principle, as
shown in Table 11.

These alternative versions of Rimac are currently undergoing
pilot evaluation during the kinematics and dynamics units in high
school physics classes. Several urban and suburban schools in the
Pittsburgh, PA, area are participating in this pilot study. We predict

Table 9
Application of Rule 5 in an Experimental Knowledge Construction Dialogue (KCD) but Not in the Corresponding Control KCD

Experimental KCD Control KCD

Tutor: In the problem you’ve just solved, is the acceleration pointing in
the same direction or in the opposite direction of the supertanker’s
motion?

Tutor: In the problem you’ve just solved, is the acceleration pointing in
the same direction or in the opposite direction of the supertanker’s
motion?

Student: Opposite. Student: Opposite.
Tutor: So why did you think this? Tutor: Very good. Now let’s step through the reasoning.
Student: Because when an object is slowing down, acceleration is

opposite to its motion.
Tutor: Very good. Now let’s step through the reasoning.

Note. Bold typeface indicates application of the rule.

Table 10
Application of Rule 6 in an Experimental Knowledge Construction Dialogue (KCD) but Not in the Corresponding Control KCD

Experimental KCD Control KCD

Tutor: When an object is slowing down, how does the final velocity (vf)
compare to the initial velocity (vi) for any interval of time? (smaller,
larger, other)

Tutor: When an object is slowing down, how does the final velocity (vf)
compare to the initial velocity (vi) for any interval of time? (smaller,
larger, other)

Student: Larger Student: Larger
Tutor: If the object is speeding up, then its final velocity is larger

than its initial velocity. But when an object is slowing down, its
velocity is getting smaller all the time. So for any interval of time, the
final velocity is smaller than the initial velocity.

Tutor: When an object is slowing down, its velocity is getting smaller
all the time. So for any interval of time, the final velocity is smaller
than the initial velocity.

Note. Bold typeface indicates application of the rule.
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that the decision-rule-driven version will outperform the less in-
teractive control and that the effect will be greatest for less pre-
pared students, a common finding for evaluations of instructional
interventions (VanLehn et al., 2007).

Conclusion

The holy grail of tutoring research is to identify specific features
of human tutorial dialogue that account for its remarkable effec-
tiveness (e.g., Bloom, 1984; Cohen, Kulik, & Kulik, 1982), so that
these features can be simulated in NL tutoring systems. Although
the interaction hypothesis posits that more interactive tutoring will
result in more learning, research to test this hypothesis shows that
constructs like interactivity and cooperative execution are too
vague to guide automated tutoring and, in particular, the scaffold-
ing that takes place when students are having difficulty solving a
quantitative problem or answering a conceptual question. In order
to operationalize interactivity and cooperative execution, we need
to identify the linguistic mechanisms that implement these con-
structs during human one-on-one tutoring and determine which
mechanisms enhance learning. This knowledge can then be used to
formulate decision rules that can be implemented and tested within
NL tutoring systems. The research described in this article takes a
step in this direction.

Overall, this study supports the interaction hypothesis. Our
analyses suggest that the effectiveness of human tutoring might
very well lie in the language of tutoring itself—in particular, in the
types of discourse relations that students and tutors co-construct
during tutorial dialogues. Moreover, the types of co-constructed
discourse relations that predict learning seem to vary according to
students’ ability levels. However, given the small sample size,
these findings should be cross-validated by analyses of dialogue

corpora involving a larger number of subjects (both students and
tutors).

A second limitation of this work stems from its focus on
co-constructed discourse relations. It might well be the case that
some discourse relations are better “told” than “elicited,” that is,
conveyed through direct, didactic explanations, instead of co-
constructed while questioning the student. For example, we were
surprised that we did not find a relationship between the frequency
with which a tutor stated abstract principles or formulae (e.g., the
equation for Newton’s second law) and prompted students to
instantiate these principles, as captured by the T–S abstract:in-
stance relation, and student learning. However, this does not ne-
gate the potential effectiveness of instantiation of variables, prin-
ciples, and so on during tutoring. Perhaps the didactic form of this
relation (abstract:instance) does support learning, among some
groups of students, but our analyses did not investigate correlations
between didactically delivered discourse relations and learning.
Hence, one goal of our future work will be to compare the
effectiveness of didactic and interactive forms of particular dis-
course relations.

A third limitation of this research is that we did not consider
variations in the way that co-construction of discourse relations is
carried out and how these variations might impact learning. For
example, we observed that there are two main ways in which tutors
address abstractions. Tutors either anchor discussions about con-
cepts and principles in the case at hand (i.e., the current problem)
or address these abstractions in context-independent terms. For
example, in both dialogue excerpts shown in Table 12, the tutor
addresses the conditional: if an object travels upward and comes
back down, its vertical displacement is 0. In the excerpt shown in
the left column, the tutor grounds this abstraction in the current

Table 11
Application of Rule 1 in an Experimental Knowledge Construction Dialogue (KCD) but Not in the Corresponding Control KCD

Experimental KCD Control KCD

Tutor: Hence from the definition of acceleration, how do the direction of
the acceleration and the direction of the change in velocity relate?
(same, opposite, no relation, it depends)

Tutor: Hence from the definition of acceleration, how do the direction of
the acceleration and the direction of the change in velocity relate?
(same, opposite, no relation, it depends)

Student: They are the same. Student: They are the same.
Tutor: Very good. Hence, in the current problem, the direction of the

acceleration opposes the direction of motion of the supertanker
because the direction of the change in velocity opposes the motion
of the supertanker. And this happens because the final velocity is
smaller than the initial velocity, and velocity has the same
direction as motion. Therefore, in general, we can say that when an
object is slowing down, the direction of the acceleration opposes the
motion of the object.

Tutor: Very good. In general, when an object is slowing down, the
direction of the acceleration opposes the motion of the object.

Note. Bold typeface indicates application of the rule.

Table 12
Alternative Ways of Prompting for a Conditional Relation

Context-specific prompt for a conditional relation Context-independent prompt to complete a conditional relation

Tutor: Picture in your mind’s eye . . . firecracker goes up, and then comes
down and lands on the ground. What is the net vertical displacement
for that whole process?

Tutor: Regardless of whether we call ground level y � 0 or y � 500,
what is the y component of the displacement for an object that
goes up and then comes back down to ground level?

Student: 0. Student: 0 meters.
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physical situation about a firecracker. He provides the antecedent
of the conditional (the “if clause”) and prompts the student for the
consequent (the “then clause”). In contrast, in another dialogue
about the same problem, shown in the right column of Table 12,
the tutor speaks in more general, context-independent terms; he
refers to “an object,” not to the firecracker. Future research should
examine which approach (if either) is better and for which types of
students.

One important lesson that automated approaches to identifying
decision rules to guide tutoring has taught us is that the “right”
pedagogical move in a given context can depend on many factors:
student characteristics, features of the problem under discussion,
features of the dialogue context, and so on. We might not even be
able to specify the relevant factors a priori. It is quite likely that we
find that the decision rules suggested by our analyses are under-
specified and in need of refinement. Although most of these rules,
as stated, could apply to any scientific, problem-solving domain,
their generalizability remains to be tested. A combination of au-
tomated approaches and carefully controlled, experimental studies
of “tuned” versions of these decision rules and others will bring
tutoring researchers closer to cracking the code of interactivity and
developing more effective tutoring systems as a result.
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